\[x_{t+1}= kx_t(1-x_t)\]
x <- 0.7
r <- 3.4
curve(r*x*(1-x))
ggplot(data = chaos_complete, aes(y = chaos_complete$`1.2`, x = c(1:R))) +
geom_point() + labs(title = 'Chaos Theory Visual') +
ggplot(data = chaos_complete, aes(y = chaos_complete$`3`, x = c(1:R))) + geom_point() +
ggplot(data = chaos_complete, aes(y = chaos_complete$`3.8`, x = c(1:R))) + geom_point()
## Warning: Use of `chaos_complete$`1.2`` is discouraged. Use `1.2` instead.
## Warning: Use of `chaos_complete$`3`` is discouraged. Use `3` instead.
## Warning: Use of `chaos_complete$`3.8`` is discouraged. Use `3.8` instead.
ggplot(rate_equilibrium, aes(x = Growth_Rate, y = Equilibrium_Pop)) + geom_point()
visualize(
rate_equilibrium,
xvar = "Growth_Rate",
yvar = c("X1", "X2", "X3", "X4", "X5","X6","X7","X8","X9","X10","X11","X12","X13","X14","X15","X16"),
comby = TRUE,
type = "line",
nrobs = -1,
theme = "theme_dark",
base_size = 10,
base_family = "sans",
labs = list(
title = "Chaos Theory Visualized",
subtitle = "The Full Visual",
caption = "", x = "Growth Rate",
y = "Equilibrium Point/Pop"
),
custom = FALSE
)
#### LET US SEE IF WE CAN VERIFY FEIGENBAUM'S CONSTANT#####
### Keep in mind the plot above and look into the data for the bifurcations
view(rate_equilibrium)
### Notice the first three bifurcations occur at
r1 = 2.986
r2 = 3.444
r3 = 3.542
# So our first approximation of FEIGENBAUM'S CONSTANT IS:
FEIGENBAUM = (r2 - r1)/(r3-r2)
print(FEIGENBAUM)
## [1] 4.673469